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Abstract

Some results on the approximation of functions from the Sobolev spaces on metric graphs

by step functions are obtained. In particular, we show that the approximation numbers an of

the embedding operator of the Sobolev space L1;pðGÞ on a graph G of finite length jGj into the

space LpðG; mÞ; where m is an arbitrary finite Borel measure on G; satisfy the inequality

anpjGj1=p0mðGÞ1=p
n�1; 1opoN:

The estimate is sharp for any nAN:
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Ametric graph is a graph whose edges are viewed as non-degenerate line segments,
rather than pairs of vertices as in the case of the standard (combinatorial) graphs.
This difference is reflected in the nature of functions on the corresponding graph.
For a combinatorial graph this is just a family of numbers ff ðvÞg where the
argument v runs over the set of all vertices, while a function on a metric graph is a
family of functions on its edges, usually subject to some matching conditions at the
vertices.
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Sobolev spaces L1;p on a metric graph G are defined in a natural way, by analogy
with their counterparts for a single interval. The local properties of functions from
these spaces outside the vertices are evidently the same as for the case of an interval.
However, the global properties may depend on the geometry of a given graph. We

establish some results on approximation of functions from L1;p by step functions.
The estimates obtained are uniform with respect to all graphs of a fixed length and
do not depend on the structure of the graph. The estimates are sharp with respect to
all the parameters involved. We believe that such results are useful for better
understanding of function spaces on graphs.

An important phase in the development of analysis on metric graphs was started

by Evans and Harris [3]. Embeddings of the Sobolev spaces W1;pðOÞ in LpðOÞ were
studied there for a wide class of domains with irregular boundary. A characteristic
feature of these domains is that they have a ‘‘ridge’’, this being a metric tree. In [3]
the study of such embeddings was reduced to the investigation of the behavior of the
approximation numbers for the weighted Hardy-type integral operators on the ridge.
For p ¼ 2 approximation numbers coincide with the singular numbers, and the
problem can be reformulated in terms of the eigenvalue behavior for the ‘‘weighted
Laplacian’’ on the tree. From this point of view the question was analyzed in [5].
Eigenvalue estimates for the weighted Laplacian were obtained there in terms of
appropriate partitions of the given tree into a family of segments. Some of the results
of [5] were considerably refined by Evans, Harris, and Lang in their recent paper [4].
The main novelty of [4] consisted in replacement of segments, as elements of a
partition, with arbitrary compact subtrees. A thorough analysis of the
partitions appearing in the process of approximation allowed the authors to
obtain important results for arbitrary p; 1pppN: In particular, for pAð1;NÞ
they established a Weyl-type asymptotic formula for the approximation
numbers.

Our goal in this paper is to consider arbitrary graphs, rather than only the trees.
The language of Hardy-type integral operators is no more relevant, since such
operators are well defined only on trees. Instead, we study embeddings of Sobolev

spaces on the graph G into the space LNðGÞ and into the spaces LpðG; mÞ where m is
an arbitrary Borel measure on G: The character of the results obtained makes it
apparent that this language is adequate. Following the idea of [4], we use partitions
of a given graph into subgraphs, however the way of this usage differs from the one
in [4]. We restrict ourselves to the case of compact graphs, since the passage to non-
compact ones can be carried out exactly as in [4] and does not require new ideas, as
soon as one is interested only in the estimates but not in asymptotics.

Introduce some necessary notations. Let G be a connected graph with the set of
vertices V ¼ VðGÞ and the set of edges E ¼ EðGÞ: Compactness of a graph means
that #EoN and hence, also #VoN: The distance rðx; yÞ ¼ rGðx; yÞ between any
two points x; yAG (and thus, the metric topology on G), and also the measure dx on
G are introduced in a natural way; see Section 2 for detail. Below jEj ¼ jEjG stands

for the measure of a measurable set ECG: If in particular E ¼ e is an edge, then jej is
its length.
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Below the symbol MðGÞ stands for the set of all finite Borel measures on G: For
1pppN; we denote by jj 	 jjp;m the norm in the space LpðG; mÞ; i.e.

jjujjp;m ¼ jjujjLpðG;mÞ ¼
Z
G

jujpdm
� �1=p

; poN;

with the standard change if p ¼ N: If the measure m is absolutely continuous, i.e.
dm ¼ V dx; then we write V instead of m in the above notations. We drop the index m
(or V ) if dm ¼ dx:

A function u on G belongs to the Sobolev space L1;p ¼ L1;pðGÞ; if u is continuous
on G and its restriction to each edge e has the distributional derivative u0 which is a

function from LpðeÞ: The functional jju0jjLpðGÞ defines on L1;p a semi-norm vanishing

on the one-dimensional subspace of constant functions.
We say that v is a step function on G and write vAStepðGÞ; if v takes only a finite

number of different values, each one on a connected subset of G: Any function
vAStepðGÞ can be represented as a linear combination of characteristic functions of
mutually disjoint connected subsets. We write vAStepnðGÞ; if for v there exists a
representation with the number of terms less or equal to n:

We are interested in the approximation of functions uAL1;pðGÞ by functions
vAStepnðGÞ: More exactly, we study two problems: the uniform approximation (i.e.
approximation in the metric jj 	 jj

N
) and approximation in the metric jj 	 jjp;m: In the

first problem we construct a mapping Zp : L1;pðGÞ-StepnðGÞ such that jju �
Zpujj

N
pCpðGÞðn þ 1Þ�1jju0jjp: This problem is elementary for p ¼ N; when the

operator ZN can be chosen linear and CNðGÞ ¼ jGj: For poN a linear mapping Zp

with the required properties does not exist but we find a non-linear mapping which

gives the same rate of approximation, with CpðGÞ ¼ jGj1=p0 : In the second problem

we establish a similar result by means of a linear approximation operator; this
operator depends on the measure m:

Below we present formulations of the typical results.

Theorem 1.1. Let G be a compact graph and 1pppN: Then for any function

uAL1;pðGÞ and any nAN there exists a function vAStepnðGÞ such that

jju � vjj
N
p
jGj1=p0 jju0jjp

n þ 1
: ð1:1Þ

If p ¼ N; the mapping u/v can be chosen linear.

Theorem 1.2. Let G be a compact graph and mAMðGÞ:

(i) Let 1ppoN; then for any nAN there exists a linear operator

Pn : L
1;pðGÞ-StepðGÞ such that rankðPnÞpn and

jju � Pnujjp;mp
jGj1=p0mðGÞ1=p

n þ 1
jju0jjp; 8uAL1;pðGÞ: ð1:2Þ
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(ii) Let p ¼ N and dm ¼ V dx where VALNðGÞ: Then for any nAN there exists a

linear operator Pn : L
1;NðGÞ-StepðGÞ such that rankðPnÞpn and

jju � Pnujj
N;Vp

jGjjjV jj
N

n þ 1
jju0jj

N
; 8uAL1;NðGÞ: ð1:3Þ

In Section 6.1 we show in particular that the factor ðn þ 1Þ�1 in (1.2) and (1.3) is
the best possible for each n:

The simplest example of a metric graph is the single segment ½0;L
CR: For this
case, above theorems basically turn into the results of Theorems 3.1 and 3.3 of the
paper [1] by Birman and the author (more exactly, into the one-dimensional
particular case of these results). The most important feature of estimates (1.1)–(1.3)
is their uniformity with respect to all graphs of a given length.

Our proofs are based upon Theorem 2.1 on partitioning of a graph. This theorem
can be considered as a far going generalization of Theorem 4.1 from [1]. For trees
and absolutely continuous measures dm ¼ V dx Theorem 2.1 was established in [7].

Let us describe the structure of the paper. The auxiliary result about partitioning
of graphs is stated in Section 2, its proof is postponed until Section 5. In Section 3 we
prove Theorems 1.1 and 1.2, more exactly we are dealing with their generalizations
to the Sobolev spaces with weights. In Section 4 we consider Besov spaces of
smoothness order yo1 and prove the corresponding analogs of Theorems 1.1 and
1.2.

The final Section 6 is devoted to discussion of the results obtained. In particular,
we interpret our results in terms of approximation numbers of the appropriate
embedding operators. We also show that in the case when G is a tree Theorem 1.2
and its generalization, Theorem 3.2, can be translated into the language of Hardy-
type integral operators. The behavior of approximation numbers of such operators
was studied in detail in [4], and there are some important intersections between our
corresponding results. We discuss them in Section 6.5.

For p ¼ 2; the results about approximation can be reformulated in terms of the
eigenvalue estimates for certain compact operators in a Hilbert space. In the present
paper we do not touch upon this problem. For the most important case of Theorem
1.2 and absolutely continuous measures m this was done in [7], and similar
applications of our other results can be obtained in the same way.

2. The key auxiliary result

Let G be a compact graph. We always consider connected graphs, including the
ones with loops and multiple joins. For two vertices v;w the notation vBw means
that there exists an edge eAE whose ends are v and w: Connectedness of the graph
means that for any two vertices v;wAV; vaw there exists a sequence fvkg0pkpm of

vertices, such that v0 ¼ v; vm ¼ w and vk�1Bvk for each k ¼ 1;y;m: The
combinatorial distance rcombðv;wÞ is defined as the minimal possible m in this
construction. We let rcombðv; vÞ ¼ 0 for any vAV:
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The degree dðvÞ of a vertex v is the total number of edges incident to v: The graphs

G consisting of a single vertex (i.e. #VðGÞ ¼ 1; EðGÞ ¼ |) are called degenerate. If
the (connected) graph G is non-degenerate, then its vertices v with dðvÞ ¼ 1 form its
boundary @G:

We say that a graph G is a subgraph of G if G is a closed and connected subset of
G: According to this definition, the vertices of a subgraph not necessarily are vertices
of the original graph. For this reason, it is often convenient to treat an arbitrary
point xAG as a vertex. We set dðxÞ ¼ 2 for any xeVðGÞ and write vBx if vAVðGÞ
is one of the endpoints of the edge containing x: Given a subgraph G; we denote by
dGðxÞ the degree of a point xAG with respect to G: Clearly, always dGðxÞpdðxÞ:
Note also that rGðx; yÞXrGðx; yÞ for any x; yAG:

Along with subgraphs, our constructions involve arbitrary connected, not
necessarily closed subsets ECG: Below CðGÞ stands for the set of all such subsets.

If EACðGÞ; then the closure %E is a subgraph, and the complement %E\E is a finite set.

The distinction between E and %E is important only when dealing with measures
mAMðGÞ having non-zero point charges.

We denote by 0 the union of subsets which are mutually disjoint, and say that the
subsets E1;y;EkACðGÞ form a partition, or a splitting of a set EACðGÞ; if E ¼
E10?0Ek: If E;E1ACðGÞ and E1CE; then sets E2;y;EkACðGÞ can be always
found which together with E1 form a partition of E:

Let F be a non-negative function defined on the set CðGÞ and taking values in
½0;NÞ: We call the function F super-additive if

E ¼ T
k

j¼1
Ej )

Xk

j¼1

FðEjÞpFðEÞ: ð2:1Þ

It is clear that any super-additive function is monotone:

E1CE ) FðE1ÞpFðEÞ: ð2:2Þ

We are interested in the class SðGÞ consisting of all super-additive functions
satisfying some additional properties which are listed below.

(1) Let fErg; rAN be a family of sets from CðGÞ: Then

FðErÞ-Fð
\

n

EnÞ as r-N if E1*E2*y ð2:3Þ

FðErÞ-Fð
[

n

EnÞ as r-N if E1CE2Cy : ð2:4Þ

(2) FðfxgÞ ¼ 0 for any xAG:

Let M0ðGÞ stand for the set of all measures mAMðGÞ; such that m has no points of
positive measure. It is clear that M0ðGÞCSðGÞ: A more general example is given by
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the implication

FðEÞ ¼ m1ðEÞam2ðEÞ1�a; m1AM0ðGÞ; m2AMðGÞ; 0oao1 0FASðGÞ: ð2:5Þ

Indeed, the super-additivity of F is implied by Hölder’s inequality, (1) follows from
the standard properties of measures, and (2) follows from the condition m1AM0ðGÞ:

It is important for the applications that only one of two measures m1; m2 has to
belong to the set M0ðGÞ:

Along with partitions, we shall use pseudo-partitions. Let E;G1;y;GrACðGÞ and
E ¼

Sr
j¼1 Gj: We say that this is a pseudo-partition of E; if #ðGi-GjÞoN for any

i; j ¼ 1;y; r; iaj: We call a pseudo-partition nice if the intersection
Tr

j¼1 Gj is not

empty. This intersection is necessarily finite.

With each function FASðGÞ we associate another function *F which is defined as
follows:

*FðEÞ ¼ inf max
j¼1;y;r

FðGjÞ; ð2:6Þ

where the infimum is taken over the set of all nice pseudo-partitions of the set E:
All our results on approximation will be derived from the following Theorem 2.1

on super-additive functions on CðGÞ:

Theorem 2.1. Let G be a compact metric graph and FASðGÞ: Then for any nAN there

exists a partition G ¼ E10?0Ek of G into a family of subsets from CðGÞ such that

kpn and

*FðEjÞpðn þ 1Þ�1FðGÞ; 8j ¼ 1;y; k: ð2:7Þ

The proof is rather complicated and we postpone it until Section 5. For super-
additive functions F such that

fE;E0ACðGÞ; jE\E0j þ jE0\Ej-0g ) fFðEÞ-FðE0Þg

both the formulation and the proof become much more transparent. This happens

due to the fact that then FðEÞ ¼ Fð %EÞ for any EACðGÞ; and the difference between
partitions and pseudo-partitions becomes unimportant. This simplified version of
Theorem 2.1 was obtained in [7]. The general result we give here, is necessary only
for handling measures meM0ðGÞ in Theorem 1.2 and its generalizations, Theorems
3.2 and 4.2.

Now we turn to applications of Theorem 2.1.

3. Approximation of weighted Sobolev spaces

3.1. Weighted Sobolev spaces

Theorems 1.1 and 1.2 are particular cases of similar results for the weighted
Sobolev spaces. For this reason we do not present separate proofs of the original
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theorems but do this for the corresponding general results. We start with the
necessary definitions.

Let G be a compact metric graph, 1pppN; and p0 ¼ pðp � 1Þ�1: Let aðxÞ be a
measurable function on G such that aðxÞ40 a.e. It is convenient to associate with
aðxÞ another function,

waðxÞ ¼ aðxÞ�1=p; poN; waðxÞ ¼ aðxÞ�1; p ¼ N: ð3:1Þ

Our basic assumption is waALp0 ðGÞ: For poN this is equivalent to 1=aALp0�1ðGÞ: A
function u on G belongs to the weighted Sobolev space L1;pðG; aÞ if u is continuous
on G; its restriction to each edge eAE has the distributional derivative u0; and

jju0jjp;aoN: The latter functional defines on L1;pðG; aÞ a semi-norm vanishing on the

subspace C of constant functions. It is often convenient to factorize L1;pðG; aÞ over
C; on the resulting quotient space #L1;pðG; aÞ :¼ L1;pðG; aÞ=C the functional jju0jjp;a
becomes the norm.

3.2. Uniform approximation

If a � 1; the following result turns into Theorem 1.1.

Theorem 3.1. Let G be a compact graph and let aðxÞ be a non-negative function on G;

such that waALp0 ðGÞ: Then for any function uAL1;pðG; aÞ and any nAN there exists a

function vAStepnðGÞ such that

jju � vjj
N
p
jjwajjp0 jju0jjp;a

n þ 1
:

If p ¼ N; the mapping u/v can be chosen linear.

Proof. 1. Let first 1opoN: Let L be a polygonal path on G connecting two given

points x0; x and parametrized by the ark length. For any function uAL1;pðG; aÞ;

uðxÞ � uðx0Þ ¼
Z

L

u0ðyÞ dy:

Indeed, this is clearly true if x; x0 lie on the same edge, and due to the continuity of u

on the whole of G the equality extends to any x; x0AG: By Hölder’s inequality,

juðxÞ � uðx0Þjp
Z

L

wp0

a dx

� �1=p0 Z
L

aðyÞju0ðyÞjpdy

� �1=p

: ð3:2Þ

Given a function uAL1;pðG; aÞ; define the function of subsets EACðGÞ;

FuðEÞ ¼ jjwajjLp0 ðEÞjju
0jjLpðE;aÞ: ð3:3Þ
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Evidently FuASðGÞ; and FuðGÞ ¼ jjwajjp0 jju0jjp;a: It follows from (3.2) that

sup
xAE

juðxÞ � uðx0ÞjpFuðEÞ; 8x0A %E; ð3:4Þ

for any set EACðGÞ:
Let now E ¼ G1,y,Gr be a nice pseudo-partition of E: According to the

definition, there is a point x0A
Tr

j¼1 Gj : Applying inequality (3.4) to each Gj; we

come to the inequality

sup
xAE

juðxÞ � uðx0Þj ¼ max
j¼1;y;r

sup
xAGj

juðxÞ � uðx0Þjp max
j¼1;y;r

FuðGjÞ:

Minimizing the right-hand side over the set of all points x0A
T

j Gj and then over the

set of all nice pseudo-partitions of E and taking into account definition (2.6), we find

a point xEA %E such that

sup
xAE

juðxÞ � uðxEÞjp *FuðEÞ: ð3:5Þ

Suppose that the graph G is split into the union of subsets E1;y;EkACðGÞ:
Consider the step function v ¼

P
1pjpk uðxEj

Þwj where wj stands for the characteristic

function of the set Ej: Then vAStepnðGÞ and by (3.5)

jju � vjj
N
p max

j¼1;y;k

*FuðEjÞ:

Using Theorem 2.1, we find a partition with kpn such that *FuðEjÞpðn þ 1Þ�1FuðGÞ
for each j ¼ 1;y; k: This gives the desired result for 1opoN:

The same argument, with minor changes, goes through for p ¼ 1; we skip it.
2. Let now p ¼ N; then we have instead of (3.2):

juðxÞ � uðx0Þjpjjau0jjLNðLÞ

Z
L

wa dxpjjau0jjLNðGÞ

Z
L

wa dx:

The above argument works if instead of (3.3) we take

FðEÞ ¼ jju0jjLNðG;aÞ

Z
E

wa dx:

This function of subgraphs depends on aðxÞ but does not depend on the choice of the
function u: Therefore, also the partition G ¼ E10?0Ek constructed according to
Theorem 2.1 does not depend on u; and hence the mapping u/v is linear. &

3.3. Weighted Lp-approximation

Now we turn to a generalization of Theorem 1.2.

Theorem 3.2. Let G be a compact graph and let aðxÞ be a non-negative function on G

such that waALp0 ðGÞ:
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(i) Let 1ppoN and mAMðGÞ: Then for any nAN there exists a linear operator

Pn ¼ Pn;m : L
1;pðG; aÞ-StepðGÞ such that rankðPnÞpn and

jju � Pnujjp;mp
jjwajjp0mðGÞ1=p

n þ 1
jju0jjp;a; 8uAL1;pðG; aÞ: ð3:6Þ

(ii) Let p ¼ N and dm ¼ V dx where VALNðGÞ: Then for any nAN there exists a

linear operator Pn ¼ Pn;a : L
1;NðG; aÞ-StepðGÞ such that rankðPnÞpn and

jju � Pnujj
N;Vp

jjwajj1jjV jj
N

n þ 1
jju0jj

N;a; 8uAL1;NðG; aÞ:

Proof. (i) Let 1opoN; we do not discuss minor changes needed in the case p ¼ 1:
The proof is quite similar to the previous one. This time we use the function

FmðEÞ ¼ jjwajjLp0 ðEÞmðEÞ1=p; EACðGÞ;

cf. (3.3). By (2.5), this function also lies in SðGÞ; and FmðGÞ ¼ jjwajjp0mðGÞ1=p:

Let E ¼ G1,y,Gr be a nice pseudo-partition of a given subset EACðGÞ and let

x0A
Tr

j¼1 Gj: Then we find, using (3.2):Z
E

juðxÞ � uðx0ÞjpdmðxÞp
Xr

j¼1

sup
xAGj

juðxÞ � uðx0ÞjpmðGjÞ

p
Xr

j¼1

Z
Gj

wp0

a dx

 !p�1

mðGjÞ
Z
Gj

aðyÞju0ðyÞjpdy

p max
j¼1;y;r

FmðGjÞ
� �p Z

E

aðyÞju0ðyÞjp dy:

Minimizing over the set of all points x0A
T

j Gj and then over the set of all nice

pseudo-partitions of E; we find a point xE;mA %E such thatZ
E

juðxÞ � uðxE;mÞjpdmðxÞpð *FmðEÞÞp

Z
E

aðyÞju0ðyÞjp dy: ð3:7Þ

Suppose now that the graph G is split into the union of subsets E1;y;EkACðGÞ and
let v be the step function v ¼

P
1pjpk uðxEj ;mÞwj: Then we derive from (3.7) thatZ

G

juðxÞ � vðxÞjp dmðxÞp
Xk

j¼1

*FmðEjÞ
� 
p

Z
Ej

aðyÞju0ðyÞjp dy

p max
j¼1;y;k

ð *FmðEjÞ
� �p Z

G

aðyÞju0ðyÞjp dy:

Applying Theorem 2.1 to the function Fm; we find a partition with kpn; for which

max
j¼1;y;k

*FmðEjÞpðn þ 1Þ�1FmðGÞ:
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This partition depends on m but does not depend on the choice of the function
uALpðG; aÞ: This implies that the operator Pn : u/v is linear, and we arrive at (3.6).

(ii) The result is an immediate consequence of Theorem 3.1. &

4. Approximation of Besov spaces Bh;pðGÞ with yo1; py41

4.1. Spaces By;pðGÞ

As in the previous section, it is convenient for us to consider the spaces factorized
over the subspace C of constant functions. However, in our notations we do not
distinguish between a function u and the corresponding factor-element. In order to
simplify our reasonings, we consider only 1opoN and the spaces without weights.

The most natural approach to the spaces By;pðGÞ uses interpolation between the

space #L1;pðGÞ; see Section 3.1, and the quotient space #LpðGÞ ¼ LpðGÞ=C: As usual,

the norm in #LpðGÞ is defined by

jjujj #LpðGÞ ¼ min
cAC

jju � cjjp:

The spaces #LpðGÞ and #L1;pðGÞ form a Banach couple, see e.g. [8], and we define the
interpolation space

#By;pðGÞ :¼ #By;p
p ðGÞ ¼ ð #LpðGÞ; #L1;pðGÞÞy;p; 0oyo1: ð4:1Þ

We write uABy;pðGÞ; when it is convenient to view u as an individual function rather
than the equivalence class fu þ Cg: We do not discuss here interpolation with the

second parameter qap which would lead to the general Besov spaces By;p
q :

There are many ways to define an interpolation norm in #By;p: For our purposes it
is convenient to use the L-method with the parameters p0 ¼ p1 ¼ p; see e.g. [8,
Section 1.4]. So, we define for 0otoN:

Lðt; u;GÞ ¼ inffjju0jjp#LpðGÞ
þ tjju0

1jj
p

LpðGÞ : u ¼ u0 þ u1;

u0A #LpðGÞ; u1A #L1;pðGÞg: ð4:2Þ

A function uALpðGÞ þ L1;pðGÞ belongs to the space By;pðGÞ if and only if

ðjjujjBy;pðGÞÞ
p ¼ ðjjujj

B̂
y;pðGÞÞ

p :¼
Z

N

0

t�1�yLðt; u;GÞ dtoN: ð4:3Þ

Replacing in (4.3) the graph G by its arbitrary subset EACðGÞ and fixing an

element uABy;pðGÞ; we obtain the function

Jy;uðEÞ ¼ ðjjujj #By;pðEÞÞ
p; EACðGÞ: ð4:4Þ

Let us show that Jy;uASðGÞ: First of all, we note that the function J0;uðEÞ ¼ jjujjp#LpðEÞ
lies in SðGÞ: Indeed, the properties (1) and (2) of functions FASðGÞ; cf. Section 2,
are evidently fulfilled, and for any constant c and any partition E ¼ E10?0Ek
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we haveZ
E

ju � cjp dx ¼
Xk

j¼1

Z
Ej

ju � cjp dxX
Xk

j¼1

inf
cjAC

Z
Ej

ju � cjjp dx

which yields super-additivity. The function J1;uðEÞ ¼ jju0jjp
LpðEÞ also lies in SðGÞ;

therefore the same is true for the function Lðt; u;GÞ defined by equality (4.2) for the
set EACðGÞ substituted for G: Integration in (4.3) does not violate the property of a
function to lie in SðGÞ: Hence, it is proved that Jy;uASðGÞ: It follows from here and

(2.2) that

jjujjp#By;pðE1Þ
pjjujjp#By;pðEÞ

; 8E;E1ACðGÞ; E1CE: ð4:5Þ

If yp41; any function uABy;pðGÞ is continuous. This is well known when G is a
single segment. Hence, u is continuous on any polygonal path in G and thus, on the
whole of G:

Denote by Cðy; pÞ the sharp constant in the inequality

max
x;x0A½0;l


juðxÞ � uðx0ÞjpCðy; pÞly�1=pjjujjBy;p½0;l
: ð4:6Þ

The value of Cðy; pÞ does not depend on l; which follows from the homogeneity
arguments. Inequality (4.6) automatically extends to the graphs: due to (4.5),

sup
x;x0AE

juðxÞ � uðx0ÞjpCðy; pÞjEjy�1=p
Jy;uðEÞ1=p; 8EACðGÞ; ð4:7Þ

where the function Jy;uðEÞ is defined by (4.4).

4.2. Approximation of By;p

Below are analogs of Theorems 1.1 and 1.2 for the spaces By;pðGÞ:

Theorem 4.1. Let G be a compact graph, 0oyo1; and 1=yopoN: Then for any

function uABy;pðGÞ and any nAN there exists a function vAStepnðGÞ such that

jju � vjj
N
pCðy; pÞ

jGjy�1=pjjujjBy;pðGÞ

ðn þ 1Þy
: ð4:8Þ

We only outline the proof; details can be easily reconstructed by analogy with
Theorem 3.1.

Together with Jy;uðEÞ; the function

FuðEÞ ¼ jEj1�1=ðpyÞ
Jy;uðEÞ1=ðpyÞ ð4:9Þ

also belongs to SðGÞ; cf. (2.5). Let subsets G1;y;GrACðGÞ form a nice
pseudo-partition of a set EACðGÞ and let x0 be a point from their intersection.
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The inequality

sup
xAE

juðxÞ � uðx0ÞjpCðy; pÞ max
j¼1;y;r

FuðGjÞ
� �y

is easily derived from (4.7). Minimizing over the set of all points from
T

j Gj

and then, over the set of all nice pseudo-partitions of E; we find a point xEA %E;
such that

sup
xAE

juðxÞ � uðxEÞjpCðy; pÞðeFFuðEÞÞy:

The proof is concluded by applying Theorem 2.1 to function (4.9).

Theorem 4.2. Let G be a compact graph, 0oyo1; and 1=yopoN: Let mAMðGÞ:
Then for any nAN there exists a linear operator Pn :B

y;pðGÞ-StepðGÞ such that

rankðPnÞpn and

jju � Pnujjp;mpCðy; pÞjGjy�1=pmðGÞ1=p

ðn þ 1Þy
jjujjBy;p ; 8uABy;pðGÞ: ð4:10Þ

Again, we only sketch the proof. We make use of the function

FmðEÞ ¼ jEj1�1=ðypÞmðEÞ1=ðypÞ

which by (2.5) belongs to SðGÞ: For any set EACðGÞ we find a point xE;mA %E such

that Z
E

juðxÞ � uðxE;mÞjpdmðxÞpCðy; pÞpðeFFmðEÞÞyp
Jy;uðEÞ; ð4:11Þ

cf. (3.4). Let G ¼ E10?0Ek be an arbitrary partition of the graph G:

Let v ¼
Pk

j¼1 uðxEj ;mÞwj ; then we derive from (4.11) using the super-additivity

of Jy;u:Z
G

ju � vjpdmðxÞ ¼
Xk

j¼1

Z
Ej

ju � uðxEj ;mÞj
p
dmðxÞpCðy; pÞpðeFFmðEjÞÞyp

Jy;uðEjÞ

pCðy; pÞp max
j¼1;y;k

eFFmðEjÞ
� �yp

Jy;uðGÞ:

We come to the desired result applying Theorem 2.1 to the function Fm and taking

into account that the mapping P : u/v is linear.
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5. Proof of Theorem 2.1

5.1. The case of trees

Let G ¼ T be a tree, that is connected graph without cycles, loops and multiple
joins. For any two points x; yAT there exists a unique simple polygonal path in T

connecting x with y; we denote it by /x; yS: It is clear that j/x; ySj ¼ rðx; yÞ:
For trees the notion of nice pseudo-partition simplifies. Indeed, if T ¼

Y1,?,Yr is a nice pseudo-partition of a (closed) subtree TCT; then the

intersection X ¼
Tr

j¼1 Yj consists of exactly one point. For if x1ax2 and x1; x2AX;
then also /x1; x2SCX which contradicts the definition of pseudo-partition. So, the
point xA

T
j Yj is uniquely defined by a nice pseudo-partition. Besides, all the

subsets Yj are necessarily closed, i.e. each of them is a subtree of T :

Conversely, each nice pseudo-partition of T is uniquely determined by the choice
of the point x: Indeed, the tree T splits in a unique way into the union of subtrees
YjCT ; j ¼ 1;y; dT ðxÞ; rooted at x and such that dYj

ðxÞ ¼ 1 for each j: Evidently

this pseudo-partition is nice. We call the pair fT ; xg a punctured subtree and the
above constructed partition—its canonical pseudo-partition.

Let FASðTÞ: Defining

F0ðT ; xÞ ¼ max
j¼1;y;dT ðxÞ

FðYjÞ; ð5:1Þ

we evidently haveeFFðTÞ ¼ min
xAT

F0ðT ; xÞ: ð5:2Þ

Let in particular T ¼ T: Each subtree Yj appearing in the canonical pseudo-

partition of fT; xg is determined by indication of its initial edge /x; vS; vBx and we
denote this subtree by Y/x;vS: For T ¼ T definition (5.1) takes the form

F0ðT; xÞ ¼ max
vBx

FðY/x;vSÞ:

The following lemma is the heart of our proof of Theorem 2.1.

Lemma 5.1. Let T be a compact metric tree and FASðTÞ: Then for any eAð0;FðTÞÞ
there exists a pseudo-partition T ¼ T,T 0; such that the set T 0

\T is connected (that is,
belongs to CðTÞ) and for the single point x�AT-T 0 the inequalities hold:

F0ðT ; x�Þpe; ð5:3Þ

FðT 0
\fx�gÞpFðTÞ � e: ð5:4Þ

Proof. Without loss of generality, we can assume FðTÞ ¼ 1: Take any vertex v0A@T;

then F0ðT; v0Þ ¼ FðTÞ ¼ 1: There is a unique vertex v1Bv0: Now we choose the
vertices v2Bv1;y; vkþ1Bvk;y as follows. If vk is already chosen, we define vkþ1 as
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the vertex different from vk�1 and such that

FðY/vk ;vkþ1SÞ ¼ max
wBvk ;wavk�1

FðY/vk ;wSÞ ¼ F0ðY/vk ;vkþ1S; vkÞ: ð5:5Þ

If there are several vertices wBvk at which the maximum in the middle term of (5.5)
is attained, then any of them can be chosen as vkþ1: The described procedure is
always finite, it terminates when we arrive at a vertex vmA@T: On the path P ¼
/v0; vmS we introduce the natural ordering, i.e. yjx means that xA/v0; yS: We
write ygx if yjx and yax:

Let xAP be not a vertex of T; then vk�1!x!vk for some k ¼ 1;y;m: Denote

Tþ
x ¼ Y/x;vkS; T�

x ¼ Y/x;vk�1S; xav0;y; vm:

We also define the subtrees T7
x for x ¼ v0;y; vm: Namely,

T�
vk
¼ T/vk ;vk�1S; k ¼ 1;y;m;

Tþ
v0
¼ T; Tþ

vk
¼

\
vk�1!x!vk

Tþ
x ¼

[
vBvk ;vavk�1

T/vk ;vS; k ¼ 1;y;m � 1:

Finally, T�
v0
¼ fv0g; Tþ

vm
¼ fvmg are degenerate subtrees. For any xAP we have

T ¼ Tþ
x ,T�

x : Clearly, this is a pseudo-partition of the tree T; and Tþ
x -T�

x ¼ fxg:
Besides, for any xAP we have xA@T�

x ; and the set T�
x \Tþ

x ¼ T�
x \fxg is connected,

i.e. belongs to CðTÞ:
The function FðxÞ ¼ FðTþ

x Þ is well defined on P and non-increasing. By (2.3), F is

left-continuous with respect to the ordering adopted. By the construction,

F0ðTþ
x0
; x0Þ ¼ Fðx0Þ; 8x0AP:

Further, (2.4) implies that

Fðx0þÞ :¼ lim
xgx0;x-x0

FðxÞ ¼ FðT�
x0
\fx0gÞ; 8x0AP:

We also have

0 ¼ FðvmÞoeoFðv0Þ ¼ 1:

Therefore, there exists a point x�AP such that

F0ðTx� ; x�Þ ¼ Fðx�ÞXeXFðx�þÞ:

We take T ¼ Tþ
x� and T 0 ¼ T�

x� : Then inequality (5.3) is satisfied and (5.4) is implied

by super-additivity:

FðT 0
\fx�gÞp1� FðTÞ ¼ 1� Fðx�Þp1� e: &

5.2. Proof of Theorem 2.1 for the case of trees

Let G ¼ T be a tree.

1. Let n ¼ 1: Apply the result of Lemma 5.1 with e ¼ FðTÞ=2: Let T ¼ T,T 0 be the
corresponding pseudo-partition, then F0ðT 0; x�ÞpFðT 0ÞpFðTÞ=2: Consider the
canonical pseudo-partition of the punctured tree fT; x�g: Each subtree of this
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pseudo-partition is contained either in T or in T 0; therefore

F0ðT; x�ÞpmaxðeFFðT ; x�Þ;F0ðT 0; x�ÞÞpFðTÞ=2:

Taking (5.2) into account, we see that (2.7) with k ¼ n ¼ 1 is satisfied if we take
E1 ¼ T:

2. We proceed by induction. Suppose that the result is already proved for n ¼ n0 � 1:
Let T ¼ T,T 0 be the pseudo-partition constructed according to Lemma 5.1 for

e ¼ ðn0 þ 1Þ�1FðTÞ and let T-T 0 ¼ fx�g: Then

FðT 0
\fx�gÞpn0ðn0 þ 1Þ�1FðTÞ:

Let us define a function F0 of subsets EACðT 0Þ; taking
F0ðEÞ ¼ FðE\fx�gÞ; 8EACðT 0Þ;

then evidently F0ASðT 0Þ: By the inductive hypothesis, there exists a splitting of T 0

into the union of subsets EjACðT 0Þ; j ¼ 1;y; k such that kpn0 � 1 and for each j

#F0ðEjÞpn�1
0 F0ðT 0Þ ¼ n�1

0 FðT 0
\fx�gÞpðn0 þ 1Þ�1FðTÞ:

The point x� lies in only one of the sets Ej; let it be Ek: Since x�A@T 0; we conclude

that the set Ek\fx�g is connected and therefore belongs to CðTÞ:
The family E1;y;Ek�1;Ek\fx�g;T forms the desired partition of T for n ¼ n0:

For the trees, the proof of Theorem 2.1 is complete.

5.3. General case

Theorem 2.1, for arbitrary graphs, can be easily reduced to the case of trees by
means of ‘‘cutting cycles’’. Below we describe the procedure of such reduction.

Let G be a compact graph and F be a function from SðGÞ: Let e be an edge of G
which is a part of a cycle. Supposing that e is not a loop, we identify e with the
segment ½0; jej
: Take any point xAIntðeÞ and replace it by the pair x1; x2 of new
vertices. Respectively, the edge e is replaced by the pair e1; e2 of new edges whose
total length is equal to jej: As the result, we obtain a new graph, say G1: Note that
the edges e1; e2 are parts of no cycle in G1: Define the mapping t1 : G1-G which is
identical on G\IntðeÞ and sends isometrically e1 onto ½0; x
 and e2 onto ½x; jej
: The
mapping t1 is one-to-one on G1\fx1; x2g; and t1ðx1Þ ¼ t1ðx2Þ ¼ x: It is clear that t1
is non-expanding and hence, continuous.

The changes in this construction, needed if e is a loop, are evident.
Now, define a function F1 on the set CðGÞ; namely

F1ðEÞ ¼ Fðt1ðEÞÞ if x1AE; F1ðEÞ ¼ Fðt1ðEÞ\fxgÞ if x1eE:

The function F1 is super-additive. Indeed, let EACðG1Þ and E ¼ T
k

j¼1
Ej : If x1eE;

then also x1eEj for any j; and if x1AE; then x1AEj0 for exactly one value of j: In

both cases, inequality (2.1) for F1 is implied by the similar inequality for F:
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Properties (1) and (2) for the function F1 also follow from the same properties for F:
Hence, F1ASðG1Þ:

Repeating this procedure, we obtain a sequence of graphs G0 :¼ G;G1;y;Gm; a
sequence of mappings tj : Gj-Gj�1; j ¼ 1;y;m; and a family of functions

FjASðGjÞ: The procedure stops as soon as we come to a graph without cycles and

loops, that is when Gm ¼: T is a compact tree. The mapping t ¼ tm3?3t1 : T-G is
continuous and measure preserving. Due to the continuity of t; TACðTÞ )
tðTÞACðGÞ: Besides, t transforms partition into partition and preserves the property
of a partition to be nice. The function Fm belongs to SðGmÞ and FmðTÞ ¼ FðGÞ:

By the result of previous section, for a given nAN there exists a partition T ¼

T
k

j¼1 Ej into the union of subsets from CðTÞ; such that kpn andeFFmðEjÞpðn þ 1Þ�1FmðTÞ ¼ ðn þ 1Þ�1FðGÞ for each j: Taking E0
j ¼ tðEjÞ; we find a

partition of G which meets all the requirements of Theorem 2.1.

6. Complements and concluding remarks

6.1. On the sharpness of estimates

(a) The factor ðn þ 1Þ�1 in inequality (2.7) of Theorem 2.1 is sharp for each n: To
see this, consider the star graph GN consisting of N edges ek ¼ /o; vkS; k ¼ 1;y;N

of equal length 1, all emanating from the root o: For any subset EACðGNÞ we define
FðEÞ ¼ jEj; then FASðGNÞ: Take n ¼ N � 1; then at least one of the subsets Ej

appearing in the conclusion of Theorem 2.1 necessarily contains two edges of GN :

Thus, FðEjÞX2 and hence, eFFðEjÞX1 for any nice pseudo-partition of Ej: Since

jGN j ¼ N ¼ n þ 1; we see that inequality (2.7) turns into equality.

(b) The same factor ðn þ 1Þ�1 in inequality (1.2) of Theorem 1.2 is also sharp for
each n: Indeed, consider the star graph GN and the measure mAMðGNÞ defined as

m ¼ dv1 þ?þ dvN
: Consider also the subspace YCL1;pðGNÞ formed by the functions

u such that upek ¼ ckrðo; xÞ; k ¼ 1;y;N: Then

jju0jjp ¼ jjujjLpðGN ;mÞ ¼ jjcjjcp

N
; c ¼ fckg1pkpN ; 8uAY :

It follows that for any linear operator P : L1;pðGÞ-LpðGN ; mÞ with rankðPÞpn the
quantity

inf
uAL1;pðGÞ: jju0 jjp¼1

jju � PujjLpðGN ;mÞ

is no smaller than the n-width in cp
N of the unit ball of this space. For noN this n-

width is equal to one, see e.g. [6], Proposition 1.3. Since jGN j ¼ mðGNÞ ¼ N; we see

that for n ¼ N � 1 an element uAL1;pðGÞ : jju0jjp ¼ 1 can always be found in such a
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way that

jju � PujjLpðGN ;mÞX1 ¼ jGN j1=p0mðGNÞ1=p

n þ 1
:

Replacing the above measure m by a sequence of measures Vj dx which �-weakly
approximate m; we find that the factor ðn þ 1Þ�1 in (1.2) is the least possible also for
absolutely continuous measures. However, for each particular absolutely continuous
measure m inequality in (1.2) is always strict.

(c) The same factor in the inequality (1.1) is sharp for n ¼ 1: For n41 it becomes
sharp, provided one passes to the version of Theorem 1.1 (and its generalization,
Theorem 3.1) dealing with vector-valued functions. Namely, let X be a Banach space

and let L1;pðG;X Þ stand for the space of X -valued functions on G whose definition is
clear by analogy with the case of scalar-valued functions, cf. Section 1. Both

mentioned theorems extend to the spaces L1;pðG;XÞ; the proof actually remains the
same.

Now, take X ¼ cN: For kAN; let ZkAcN be the element whose kth coordinate is 1
and all the others are equal to zero. On the star graph GN consider the function u

which is Zkrð0; xÞ on the edge ekAGN : Then uAL1;pðGN ;XÞ for each pA½1;N
 and
jju0jjLpðGN ;X Þ ¼ 1: The same reasoning as in (a) shows that for n ¼ N � 1 the constant

factor ðn þ 1Þ�1 in the vector-valued version of (1.1) is the best possible.

6.2. Graphs and trees:comparison of the corresponding results

Given a compact graph G; let T and t : T-G be the tree and the mapping
constructed in Section 5.3. Let aðxÞ be a non-negative function on G such that

waALp0 ðGÞ (cf. (3.1)). Define bðxÞ ¼ aðtðxÞÞ; then wbALp0 ðTÞ and jjwbjjLp0 ðTÞ ¼
jjwajjLp0 ðGÞ: Moreover, it is clear from the construction that the mapping

uðxÞ/vðxÞ ¼ uðtðxÞÞ defines an isometry between the space L1;pðG; aÞ and an

appropriate subspace of finite codimension in L1;pðT; bÞ: Indeed, suppose that the

passage from the graph G to the tree T consists in replacing the points xð jÞAG;

j ¼ 1;y;m by the pairs fx
ð jÞ
1 ; x

ð jÞ
2 gCT: Then the space L1;pðG; aÞ can be identified

with the subspace

fuAL1;pðT; bÞ: uðxð jÞ
1 Þ ¼ uðxð jÞ

2 Þ; j ¼ 1;y;m:g

The above mapping u/v defines also the natural isometry between the spaces
LpðG;VÞ and LpðT;WÞ where WðxÞ ¼ VðtðxÞÞ: It follows from these remarks that
Theorem 3.2 for general graphs reduces to its particular case for trees.

The same is true for Theorem 4.2, though for the spaces By;p the above mapping
u/v is not necessarily an isometry. But this is always a contraction, so that the
constant in estimate (4.10) for a graph G cannot exceed the one for the
corresponding tree T:
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6.3. Approximation numbers of embedding operators

Suppose that a point oAG is fixed, and define the spaces

W1;pðG; a; oÞ ¼ fuAL1;pðG; aÞ: uðoÞ ¼ 0g

and, for 0oyo1 and p41=y;

By;pðG; oÞ ¼ fuABy;pðGÞ: uðoÞ ¼ 0g:

We take jju0jjp;a as the norm in W1;pðG; a; oÞ and jjujjBy;p (cf. (4.3)) as the norm in

By;pðG; oÞ: It is clear that the spaces W1;pðG; a; oÞ and By;pðG; oÞ are naturally

isometric to the quotient spaces #L1;pðG; aÞ and #By;pðGÞ; respectively. For this reason,
Theorems of Sections 3 and 4 immediately apply to the spaces W1;pðG; a; oÞ and

By;pðG; oÞ:
Given two Banach spaces Y and X and an integer nX0; let Pn stand for the set of

all linear mappings P : Y-X whose rank does not exceed n: Recall the definition
of the approximation numbers anðTÞ of a bounded linear operator T : X-Y ;
see e.g. [2]:

anðTÞ ¼ inf
PAPn�1ðY ;X Þ

jjT � PjjX : ð6:1Þ

In particular, this definition applies to the case when Y is embedded in X

algebraically and topologically, and T ¼ JY ;X is the corresponding embedding

operator. Theorem 3.2 implies that under its assumptions we have, for any nAN:

anðJW1;pðG;a;oÞ;LpðG;mÞÞp
jjwajjp0mðGÞ1=p

n
; poN; ð6:2Þ

anðJW1;NðG;a;oÞ;LNðG;VÞÞp
jjwajj1jjV jj

N

n
: ð6:3Þ

In the same way, it follows from Theorem 4.2 that

anðJBy;pðG;a;oÞ;LpðG;mÞÞpCðy; pÞjGjy�1=pmðGÞ1=p
n�y; 8nAN; 1opyoN:

6.4. Hardy-type operators on trees

For the case of trees there is a useful interpretation of estimates (6.2) and (6.3) in
terms of approximation numbers of certain integral operators.

Let T be a compact metric tree on which a point o (the root) is selected. Below we
use the notation /x; yS introduced is Section 5.1.
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The Hardy-type integral operator with weights v;w on the rooted tree fT; og is
defined as

gðxÞ ¼ ðHv;wf ÞðxÞ ¼ ðHv;wðT; oÞf ÞðxÞ ¼ vðxÞ
Z
/o;xS

f ðyÞwðyÞdy: ð6:4Þ

At first we assume that wðxÞa0 a.e. and set aðxÞ ¼ jwðxÞj�p; then w ¼ wa; cf. (3.1). It
is easy to see that the operator

Qw : f ðxÞ/uðxÞ ¼
Z
/o;xS

f ðyÞwðyÞdy

defines an isometry of the space LpðTÞ onto L1;pðT; a; oÞ: Besides, jjgjjp ¼ jjQwf jjp;V
where V ¼ jvjp: This shows that

anðHv;wÞ ¼ anðJW1;pðT;a;oÞ;LpðT;VÞÞ; 8nAN:

Now we are in a position to justify the following result.

Theorem 6.1. Let T be a compact metric tree with the root o and let wALp0 ðTÞ;
vALpðTÞ where 1opoN: Then the operator Hv;w is compact in LpðTÞ and its

approximation numbers satisfy the estimate

anðHv;wÞp
jjvjjpjjwjjp0

n
; 8nAN: ð6:5Þ

Proof. If wðxÞa0 a.e., then (6.5) immediately follows from Theorem 3.2. The result
extends to the general case by a standard approximation argument. &

6.5. Comparison with the results of [4]

The techniques of [4] is based upon a careful analysis of the function Av;wðTÞ of
subtrees TACðTÞ which in the compact case can be defined as follows:

Av;wðTÞ ¼ min
oAT

jjHv;wðT ; oÞ : LpðTÞ-LpðTÞjj;

cf. Theorem 3.8 in [4]. Evidently,

Av;wðTÞpjjvjjLpðTÞjjwjjLp0 ðTÞ:

Up to a change of notations, the expression on the right-hand side is exactly the
function F appearing in the proof of Theorem 3.2. One may attempt to apply our
analysis directly to the function Av;wðTÞ: However, such an attempt fails, since this

function is, in general, not super-additive. Note also that the converse inequality
Av;wðTÞXcjjvjjLpðTÞjjwjjLp0 ðTÞ with any c40 is impossible.

In terms of the function Av;wðTÞ the authors of [4] found for the approximation

numbers an ¼ anðHv;wðT; oÞÞ some two-sided estimates, see Theorem 3.18 there.

Based upon these estimates, they justified the Weyl-type asymptotics for an: As it was
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pointed out to the author by Evans, the inequality

anþ4p3n�1jjvjjpjjwjjp0

which is only slightly rougher than (6.5), can be easily derived from the results of [4].
As we see it, the techniques developed in the present paper gives a direct and

unified approach to the upper estimates of approximation numbers for embedding
operators of Sobolev spaces on graphs. It cannot give any lower estimates. For
integral operator (6.4) our new result consists in finding the upper estimate with the
best-possible constant factor.

Some results can be obtained by combination of our both approaches. For
example, the reasonings presented in Section 6.2 immediately lead to the following
result.

Proposition 6.2. Under the assumptions of Theorem 3.2, the following asymptotic

formula for the approximation numbers an of the embedding operator of the space

W1;pðG; a; oÞ into LpðG;VÞ:

lim
n-N

nan ¼ ap

Z
G

waðxÞVðxÞ1=p
dx; ap ¼ A1;1ð½0; 1
Þ:

Indeed, for trees this is nothing but a reformulation of Corollary 5.4 from [4].
Since the passage to a subspace of finite codimension does not affect the asymptotic
behavior of approximation numbers, the desired result for general compact graphs
follows.

Lemma 5.9 from [4], which deals with the cases p ¼ 1 and N; extends to graphs in
the same way.

6.6. More on approximation of spaces By;pðGÞ

In Section 4 we used interpolation for the description of these spaces. It is
natural to try using interpolation in a somewhat more systematic way, namely
for deriving Theorem 4.2 from Theorem 1.2. Unfortunately, this idea does not
work. Indeed, the construction of the operator Pn in Theorem 1.2 heavily relies

upon continuity of the functions from L1;p: As a consequence, Pn is not well defined
as an operator in Lp; and there is no base for interpolation.

It is also unclear whether the result of Theorem 4.2 can be extended to the general

Besov spaces By;p
q with qap; and also to the fractional Sobolev spaces Ly;p :¼

½Lp; L1;p
y: The obstacle is basically the same. Indeed, let 0oy0oyoy1o1 and

py041: Given a measure mAMðGÞ; let P0
n;P1

n be the operators Pn constructed in

Theorem 4.2 for the spaces By0;p;By1;p; respectively. In general, P0
naP1

n; and again

there is no base for interpolation.
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